Jordan, J. H.; Gibb, B. C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44, 547-585.
Abstract
This review focuses on molecular containers formed by assembly processes driven by the hydrophobic effect, and summarizes the progress made in the field over the last ten years. This small but growing facet of supramolecular chemistry discusses three classes of molecules used by researchers to investigate how self-assembly can be applied to form discrete, mono-dispersed, and structurally well-defined supramolecular entities. The approaches demonstrate the importance of preorganization of arrays of rigid moieties to define a specific form predisposed to bind, fold, or assemble. As the examples demonstrate, studying these systems and their properties is teaching us how to control supramolecular chemistry in water, shedding light on aspects of aqueous solutions chemistry, and illustrating novel applications that harness the unique properties of the hydrophobic effect.
Last updated on 02/09/2023