2016

Hillyer, M. B.; Gibb, B. C. Molecular Shape and the Hydrophobic Effect. Annual Review of Physical Chemistry 2016, 67, 307-329.
This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins.

2015

Sullivan, M. R.; Gibb, B. C. Differentiation of small alkane and alkyl halide constitutional isomers via encapsulation. Org. Biomol. Chem. 2015, 13, 1869-1877.
Previously we have demonstrated that host 1 is capable of hydrocarbon gas separation by selective sequestration of butane from a mixture with propane in the headspace above a solution of the host (C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc., 2006, 128, 16498–16499). Expanding on the idea of using this host as a means to affect guest discrimination, we report here on NMR studies of the binding of constitutional isomers of two classes of small molecules: hexanes and chloropentanes. Our results indicate that even with these relatively straightforward classes of molecules, guest binding is complicated. Overall, host 1 displays a preference to bind guests with a X–C(R2)–C(R2)–Me (X = Cl or Me) structure, and more generally, a preference for branched guests rather than highly flexible, unbranched derivatives. The complexity of binding of these isomers is magnified when considering molecular differentiation between pairs of guests. In such cases, different guests demonstrated different propensities to self-sort; some self-sort exclusively, while others show very little propensity to do so. However, whereas the pool of guests reveals some general correlations between binding strength and structure, no obvious relationship between structure and degree of self-sorting was observed.
Jordan, J. H.; Gibb, B. C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44, 547-585.
This review focuses on molecular containers formed by assembly processes driven by the hydrophobic effect, and summarizes the progress made in the field over the last ten years. This small but growing facet of supramolecular chemistry discusses three classes of molecules used by researchers to investigate how self-assembly can be applied to form discrete, mono-dispersed, and structurally well-defined supramolecular entities. The approaches demonstrate the importance of preorganization of arrays of rigid moieties to define a specific form predisposed to bind, fold, or assemble. As the examples demonstrate, studying these systems and their properties is teaching us how to control supramolecular chemistry in water, shedding light on aspects of aqueous solutions chemistry, and illustrating novel applications that harness the unique properties of the hydrophobic effect.

2014

2013