Publications

2011

Li, Y.; Giles, M. D.; Liu, S.; Laurent, B. A.; Hoskins, J. N.; Cortez, M. A.; Sreerama, S. G.; Gibb, B. C.; Grayson, S. M. A versatile and modular approach to functionalisation of deep-cavity cavitandsvia “click” chemistry. Chem. Commun. 2011, 47, 9036-9038.
The surface modification of deep-cavity cavitands has been demonstrated by using the azide-alkyne “click” coupling to attach dendritic macromolecules or linear polymers onto their periphery. The resulting set of macromolecular cavitands exhibited tuneable solubility yet retained the ability to encapsulate guest molecules.
Liu, S.; Whisenhunt-Ioup, S. E.; Gibb, C. L. D.; Gibb, B. C. An improved synthesis of 'octa-acid' deep-cavity cavitand. Supramolecular chemistry 2011, 23, 480-485.

An improved synthesis of a water-soluble deep-cavity cavitand (octa-acid, 1) is presented. Previously (Gibb, C. L. D. & Gibb, B. C., J. Am. Chem. Soc., 2004, 126, 11408-11409) we documented access to host 1 in eight (non-linear) steps starting from resorcinol; a synthesis that required four steps involving chromatographic purification. Here we reveal a modified synthesis of host 1. Consisting of seven (non-linear) steps, this new synthesis involves only one chromatographic step, and avoids a minor impurity observed in the original approach. This improved synthesis will therefore be useful for the laboratories that are investigating the properties of these types of host.

Laughrey, Z.; Gibb, B. C. Water-soluble, self-assembling container molecules: an update. Chem. Soc. Rev. 2011, 40, 363-386.
Over the past five years, an important development in the area of self-assembling containers has been the increase in interest in those containers that function in aqueous solution. This progress is a reflection of a similar trend within supramolecular chemistry in general, and is driven in part by the need to address issues and challenges within the biological sciences, as well as a desire to develop new strategies for greener chemistries carried out in water. It is also an opportunity to learn more about fundamental topics such as the hydrophobic effect. In this critical review we discuss progress in aqueous-based self-assembling container molecules since 2005 (177 references).

2010